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Abstract. New, accurate measurements of the pion and kaon electromagnetic form factors are expected
in the near future from experiments at electron–positron colliders, using the radiative return method.
We construct a model for the timelike pion electromagnetic form factor that is valid also at momentum
transfers far above the ρ resonance. The ansatz is based on vector dominance and includes a pattern of
radial excitations expected from dual resonance models. The form factor is fitted to the existing data in
the timelike region, continued to the spacelike region and compared with the measurements there and with
the QCD predictions. Furthermore, the model is extended to the kaon electromagnetic form factor. Using
isospin and SU(3)-flavor symmetry relations we extract the isospin-one contribution and predict the kaon
weak form factor accessible in semileptonic τ decays.

1 Introduction

The pion electromagnetic (e.m.) form factor Fπ(s), one of
the traditional study objects in hadron physics, nowadays
plays an essential role for the precise determination of elec-
troweak observables. An accurate knowledge of Fπ(s) at
timelike momentum transfers s > 4m2

π is needed to calcu-
late the hadronic loop contribution to the muon anomalous
magnetic moment and to the running of the e.m. coupling
(see [1, 2] for the current status).

New accurate data on the pion form factor in the time-
like region have recently been obtained by the CMD-2
collaboration [3] measuring the e+e− → π+π− cross sec-
tion at

√
s = 0.61 ÷ 0.96 GeV (for an update of these data

see [4]). In this region, it is successfully described (fitted)
using models based on ρ-meson dominance, with a small
but clearly visible ω-meson admixture. Above 1 GeV data
on e+e− → π+π− [5–7] exist but are not that accurate.
Employing isospin symmetry one also gains independent
information from the measurements of τ → π−π0ντ at
s < m2

τ (for details see, e.g. [1]). There are other interest-
ing form factors closely related to Fπ: the charged (neu-
tral) kaon e.m. form factors measured in e+e− → K+K−
(e+e− → K0K̄0), as well as the weak transition form factor
accessible in τ → K−K0ντ .

In the near future the experimental knowledge on
Fπ,K(s) will be substantially improved, due to new data to
be obtained using the radiative return method [8]. The first
measurements ofFπ with this technique in the ρ region have
already been performed by the KLOE Collaboration [9]
and the agreement with the CMD-2 data is encouraging.
At larger energies, up to 2.0–2.5 GeV, perhaps even 3 GeV,
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accurate measurements of Fπ,K are anticipated from the
BABAR experiment (for preliminary results see [10]). The
high rates expected at s � m2

ρ demand phenomenological
models more elaborated than the simple ρ- (ρ-, ω-, φ-)
dominance models for Fπ (FK). The main purpose of this
paper is to construct an ansatz for the pion form factor that
is valid in the region below and far above the ρ resonance
and to extend this model to the kaon form factor.

The model is constructed so as to obey the constraints
from analyticity and isospin symmetry and to incorporate
the proper behavior at high energies, consistent with per-
turbative QCD, and the correct normalization at s = 0.
Furthermore it is based on plausible assumptions derived
from the quark model, moderate SU(3)-breaking, vector
dominance and a pattern of radial excitations expected
from dual resonance models. It has enough flexibility to
accommodate the characteristic interference pattern of the
cross section and, once sufficiently precise data are avail-
able at higher energies, may be used to fix the parameters
of the higher excitations.

Above theρ resonance the excitedρ′(1450) andρ′′(1700)
are expected to play an important role. Already now these
two states are indispensable, if one wants to accommodate
themeasuredparameters of the ρ resonancewith the correct
normalization of Fπ(s) at s = 0, as demonstrated by ear-
lier analyses and fits within the ρ region (see, e.g. [11,12]).
In general, to include all possible intermediate hadronic
states in the γ∗ → π+π− transition amplitude, one has
to take into account an infinite series of radially excited
ρ’s. In addition, there are multihadron intermediate states
with JP = 1− and I = 1 (2π, 4π,KK̄ etc.). Hence, the
pion form factor at timelike s > m2

ρ is a complicated object
determined by a large or even infinite amount of hadronic
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parameters not accessible at present in a rigorous theoret-
ical framework.

On the other hand, at sufficiently large s one expects
Fπ(s) ∼ αs(s)/s, as predicted from perturbative QCD [13]
for the pion form factor in the spacelike region at s → −∞,
analytically continued to s → +∞. In other words, the
overlap of many intermediate hadronic states has to build
up a smooth, power-behaved function. One might consider
using this QCD prediction in the region of present interest,
that is, at intermediate timelike s. However, data on the
form factor in the spacelike region, s < 0, indicate that the
onset of this asymptotic behavior is far from the “fewGeV2”
region. Preasymptotic contributions ∼ 1/sn with n > 1,
stemming from the end point, soft mechanism [14] are
essential for s ∼ 1–10 GeV2. Approximate methods valid
at intermediate spacelike momenta, for example QCD sum
rules [15–17], allow one to calculate Fπ(s) including soft
effects. However, a straightforward analytic continuation of
Fπ(s < 0) to large s > 0 is difficult. The timelike form factor
will suffer from uncertainties in the analytic continuation
of soft parts, Sudakov logs and of αs(s) (for a discussion
see [18, 19]). Hence, QCD calculations cannot be directly
used in the large s > 0 region, e.g., for estimating the “tail”
of higher resonances in the form factor. In this paper we
therefore prefer to adopt a model for the pion form factor
formulated entirely in terms of hadronic degrees of freedom.
Importantly, the form factor, as obtained from the model,
fitted in the timelike region and extrapolated to spacelike
momenta, has a proper power-law behavior which can be
compared with the data at s < 0 and used to test various
QCD-based predictions.

Models of hadronic amplitudes, where an infinite series
of resonances at s > 0 is summed to yield a power-law
behavior at s < 0, are rooted in the Veneziano ampli-
tude and dual resonance models formulated long before
the advent of QCD. Importantly, the pattern of infinite
zero-width resonances is predicted in the Nc = ∞ limit of
QCD. Recently, the model for the pion form factor using
the masses and coefficients chosen according to Veneziano
amplitude was considered in [20]. Earlier, similar analyses
of the pion form factor can be found in [21]. Models of
dual resonance type with infinite number of resonances are
widely used also for other hadronic problems, some recent
works can be found in [22]. We will use the dual-QCDNc=∞
model [20] as a starting point, modifying it for the first
few ρ resonances, by keeping their parameters (masses,
widths and coefficients) free and fitting them to experi-
ment. In this way, the complicated effects of ρ resonances
coupled to multihadron (2π, 4π etc.) states are implicitly
taken into account. It is remarkable that the gross features
of the model are well reproduced with the (fitted) reso-
nance parameters. Since in the dual resonance amplitude
the coefficients of higher resonance contributions decrease
with the resonance number, the corresponding modifica-
tions for individual higher states are not important, and
the “tail’ of resonances is treated as in [20]. The model
for the pion form factor is also analytically continued to
the spacelike region and compared with the data there and
with the QCD predictions on Fπ(s) at large spacelike s.

Furthermore, we extend the model to the kaon form
factor, employing an SU(3)-generalization of the pion am-
plitude. Fitting the charged and neutral kaon form factors
to the data, and using flavor symmetries, we predict the
weak kaon form factor relevant for τ semileptonic decays.
Let us also mention at this point that the decomposition of
the form factors into their isospin-zero and -one components
respectively, is also of relevance for a model-independent
evaluation of γ–Z mixing [23] where the two amplitudes
contribute with a different relative weight.

The plan of this paper is as follows. In Sect. 2 we sum-
marize the phenomenology ofFπ(s) recalling the derivation
of the ρ-meson contribution, whereas in Sect. 3 the contri-
butions of excited ρ resonances are discussed. The model
for the pion form factor is introduced in Sect. 4 and its
parameters are fitted to the data. In Sect. 5 we proceed to
the kaon e.m. form factors and Sect. 6 is devoted to the
weak kaon form factor in τ decays. Section 7 contains our
summary and conclusions.

2 The ρ-meson contribution
to the pion form factor

The pion e.m. form factor is defined in the standard way,

〈π+(p1)π−(p2) | jemµ | 0〉 = (p1 − p2)µFπ(s). (1)

The quark e.m. current jemµ =
∑

q=u,d,s
eq q̄γµq can be decom-

posed into isospin-one and -zero components respectively.
At the quark level this corresponds to

jemµ =
1√
2
j3µ +

1
3
√

2
jI=0
µ − 1

3
jsµ, (2)

with

j3µ = (ūγµu− d̄γµd)/
√

2,

jI=0
µ = (ūγµu+ d̄γµd)/

√
2, jsµ = s̄γµs. (3)

The isotriplet partners of the current j3µ form the charged
weak current

j−
µ = (j1µ + ij2µ)/

√
2 = ūγµd. (4)

In the isospin symmetry limit, the I = 0 and s-quark com-
ponents of the current do not contribute to Fπ. In (1),
s = (p1 +p2)2 is the timelike momentum transfer squared,
s ≥ 4m2

π. The form factor Fπ(s), being analytically con-
tinued to the spacelike region s < 0, corresponds to the
hadronic matrix element 〈π+(p1) | jemµ | π+(−p2)〉 related
to (1) by crossing-symmetry.

There are very few model-independent relations deter-
mining or constraining the pion form factor. One of them
is the normalization condition for the pion electric charge,

Fπ(0) = 1. (5)
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An important role is played by the dispersion relation,

Fπ(s) =
1
π

∞∫
4m2

π

ds
ImFπ(s′)
s′ − s− iε

. (6)

The asymptotic behavior expected from perturbative
QCD [13],

lim
s→−∞Fπ(s) ∼ αs

s
, (7)

allows for an unsubtracted dispersion relation. The ap-
plication of (6) is based on an independent equation for
the imaginary part of the form factor derived from the
unitarity condition,

2ImFπ(s)(p1 − p2)µ (8)

=
∑
h

∫
dτh〈π+(p1)π−(p2) | h〉〈h | jemµ |0〉∗,

where all possible hadronic states h with JPC(IG) =
1−−(1+) are inserted. Each term in the sum in (8) includes
the integration over the phase space and the summation
over polarizations of the intermediate state h. Since isospin
symmetry is not exact, there could also be a small admix-
ture of the isospin-zero JPC = 1−− states, e.g. the ω and
its radial excitations.

Experimental data reveal that at low s ≤ 1 GeV2 the
most important contribution to (8) stems from ρ meson.
The ρ-meson decay constant

〈ρ0 | jemµ | 0〉 =
mρfρ√

2
ε(ρ)∗µ , (9)

and the strong ρππ coupling

〈π+(p1)π−(p2)|ρ0〉 = (p2 − p1)αε(ρ)α gρππ (10)

(where ε(ρ) is the ρ-meson polarization four-vector) deter-
mine the ρ contribution to the imaginary part of the pion
form factor in the narrow width approximation:

ImF (ρ)
π (s) =

mρfρ√
2
gρπππδ(s−m2

ρ). (11)

Substituting this into the dispersion relation (6) gives

F (ρ)
π (s) =

mρfρgρππ√
2(m2

ρ − s− iε)
. (12)

The excited ρ′, . . . resonances have contributions of the
same form, with the decay constants fρ′,... and strong cou-
plings gρ′ππ, . . .

The pion form factor constructed by adding the zero-
width ρ, ρ′, . . . resonances is an oversimplified ansatz which
cannot be used at s > 0 where the experimentally observ-
able large widths of these resonances are important. The
widths are generated by the contributions of multihadron

states to the imaginary part of Fπ, starting from the low-
est two-pion state. The contribution of the latter to the
unitarity relation

2ImF (2π)
π (s)(p1 − p2)µ =

∫
dτ2π(p′

1 − p′
2)µAππ(s)F

∗
π (s),

(13)
involves the two-pion phase space:

dτ2π =
d3p′

1

(2π)32E′
1

d3p′
2

(2π)32E′
2
(2π)4δ4(p′

1 + p′
2 − p1 − p2),

where (p′
1 + p′

2)
2 = s and Aππ(s) is the amplitude of the

strong pion–pion P-wave elastic scattering:

Aππ(s) = 〈π+(p1)π−(p2)|π+(p′
1)π

−(p′
2)〉I=1,J=1. (14)

In the low-energy region 4m2
π < s < 16m2

π, the two-pion
state is the only contribution to the unitarity relation1.
At larger s, vector mesons and various multihadron states
contribute, making a model-independent use of (8) impos-
sible.

A well-known and experimentally supported approach
which we adopt here is “vector dominance”. In its sim-
plest form it assumes that the ρ resonance saturates the
pion form factor (12), thus requiring fρgρππ/

√
2mρ = 1.

One furthermore approximates the pion–pion scattering
amplitude with an intermediate ρ exchange. Inserting the
intermediate ρ propagator in (14) and using the defini-
tion (10) we obtain

Aππ(s) 
 〈π+(p1)π−(p2)|ρ0〉〈ρ0|π+(p′
1)π

−(p′
2)〉

m2
ρ − s

= − g2
ρππ(p2 − p1) · (p′

2 − p′
1)

(m2
ρ − s)

. (15)

Substituting this ansatz together with (12) in (13), and
integrating out the two-pion phase space with the help of∫

dτ2π(p′
2 − p′

1)α(p′
1 − p′

2)µ (16)

=
(
gαµ − (p1 + p2)α(p1 + p2)µ

s

)
[ p(s)]3

3π
√
s
,

where p(s) = 1
2 (s−4m2

π)
1/2 is the pion momentum in CM

frame of two pions, we finally transform (13) to

ImF (2π)
π (s) =

mρfρ√
2(m2

ρ − s)

{
g2
ρππ[ p(s)]

3

6π
√
s

}
gρππ
m2
ρ − s

.

(17)
This formula justifies using the more general expression

F (2π)
π (s) =

mρfρ√
2(m2

ρ − s)
A(2π)(s)

gρππ
m2
ρ − s

, (18)

which can be interpreted as a two-pion loop insertion in
the ρ-meson propagator. The amplitude A(2π)(s) has a real

1 For a review on the low-energy pion form factor see [24].
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and imaginary part. A natural approximation for ImA(2π)

is the expression in curly brackets in (17). At s = m2
ρ it is

normalized to the ρ → 2π width

ImA(2π)(m2
ρ) = mρΓ (ρ → 2π) =

g2
ρππ

6πmρ

[
p(m2

ρ)
]3
. (19)

To account for all possible amplitudes with two-pion
insertions in the ρ-meson propagator, (18) has to be added
to (12), together with subsequent diagrams with two,
three, etc. two-pion loops. Summing up this geometrical
series yields

F (ρ+2π)
π (s) (20)

=

(
fρgρππ√

2mρ

)
m2
ρ

m2
ρ − s− ReA(2π)(s) − iImA(2π)(s)

for the part of Fπ which contains, in addition to the ρ
meson, the contributions of the two-pion intermediate state
coupled to ρ.

Several options for (20) are in usage. The simplest one
is to neglect the real part of A(2π)(s) and to approximate
the imaginary part by a constant, given by (19). This gives
the usual Breit–Wigner (BW) formula for the ρ resonance
with a constant width. A more refined version (used e.g.
in [12]) takes into account the s-dependence of ImA(2π)(s)
in the form of the p-wave two-pion phase space (as indicated
by (17)) with the normalization from (19):

ReA(2π)(s) = 0,

ImA(2π)(s) =
√
s
m2
ρ

s

(
p(s)
p(m2

ρ)

)3

Γ (ρ → 2π)

≡ √
sΓρ→2π(s). (21)

The function Γρ→2π(s) naturally vanishes at s < 4m2
π,

below the 2π threshold.
The Gounaris–Sakurai (GS) approach [25] represents

another option widely used. In this case one takes into
account a non-vanishing real part of A(2π)(s) calculated
from the dispersion relation with two subtractions at s = 0:

A(2π)(s) (22)

= A(2π)(0) + s
dA(2π)(0)

ds
+
s2

π

∞∫
4m2

π

ds′ ImA(2π)(s′)
s′2(s′ − s− iε)

.

Using the expression for the imaginary part given in (21)
and changing the integration variable from s(

′) to v(′) =√
1 − 4m2

π/s
(′) one transforms the integral in (22):

s2
∞∫

4m2
π

ds′ ImA(2π)(s′)
s′2(s′ − s− iε)

=

(
m2
ρΓ (ρ → 2π)
8[p(mρ)]3

)
I(s),

I(s) =
s

v

∫ 1

0
dv′v′4

[
1

v′ − v − iε
− 1
v′ + v

]
. (23)

Calculating the principal value of the integral yields the
real part:

ReI(s) = s

(
2
3

+ 2v2 − v3 log
1 + v

1 − v

)
. (24)

Using the above result in (22) one obtains the real part
of the amplitude A(2π). Furthermore, following [25] the
subtraction terms are fixed by the normalization conditions
for the mass and the width of the ρ: ReA(2π)(m2

ρ) = 0 and
d
dsReA(2π)(m2

ρ) = 0 . At s = 0 the form factor is normalized
to unity. Hence

F (ρ+2π)
π (s) =

(
fρgρππ√

2mρ

)
m2
ρ +H(0)

m2
ρ − s+H(s) − i

√
sΓρ→2π(s)

,

(25)
where we use the same notation as in [12]:

H(s) = Ĥ(s) − Ĥ(m2
ρ) − (s−m2

ρ)
d
ds
Ĥ(m2

ρ), (26)

so that

Ĥ(s) =

(
m2
ρΓ (ρ → 2π)
2π[p(mρ)]3

)( s
4

−m2
π

)
v log

1 + v

1 − v
. (27)

From experiment Γ (ρ → 2π) 
 Γtot(ρ), hence the cou-
plings of ρ to other intermediate states can be safely be
neglected. Therefore we replace in both versions of the BW
formula the ρ → 2π width by the total width removing the
superscript 2π at the form factor.

Finally, the ρ contribution to the pion form factor intro-
duced in (12) in the zero-width approximation and modi-
fied to include the width in (20), can be rewritten in the
following generic form:

F (ρ)
π (s) = cρBWρ(s), (28)

where cρ ≡ F
(ρ)
π (0) is the normalization coefficient. In the

adopted approximation it is determined by the product of
ρ decay constants and ρππ coupling:

cρ =
fρgρππ√

2mρ

, (29)

and BWρ(s) is the BW formula normalized to unity at
s = 0. For this formula two different versions will be used,
one taken from [12]:

BWKS
ρ (s) =

m2
ρ

m2
ρ − s− i

√
sΓρ(s)

, (30)

and the one from [25]:

BWGS
ρ (s) =

m2
ρ +H(0)

m2
ρ − s+H(s) − i

√
sΓρ(s)

. (31)

In both cases the effective s-dependent width is assumed
to be

Γρ(s) = Γρ→2π(s), (32)

with the RHS defined in (21) and Γρ(m2
ρ) = Γ tot

ρ .
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3 Contributions of excited ρ states

As already realized in earlier analyses of the pion form
factor (e.g., in [11,12]), the single ρ-meson approximation
is not sufficient to fulfil the normalization condition (5).
Indeed, taking the measured values for Γ (ρ → l+l−) and
Γ (ρ → 2π) from [26] we obtain fρ = 220 MeV and, respec-
tively, gρππ = 6.0, yielding cρ 
 1.2. One needs to include
the contributions of excited ρ resonances to restore the cor-
rect normalization. Currently, two of them, ρ′(1450) and
ρ′′(1700), are well established experimentally [26]. Adding
the contributions of these two states in the form (28) to
F

(ρ)
π , one fits experimental data on e+e− → 2π in the ρ

region, practically up to s = 1 GeV, restoring the normal-
ization condition Fπ(0) = 1. Both models, (30) and (31),
work well. In addition, there is a small isospin-violating ef-
fect from ω noticeable in the vicinity of ρ. In what follows,
it will be taken into account as in [12], by adding a ρ–ω
mixing term to the ρ contribution:

F (ρ)
π (s) → cρBWρ(s)

1 + cω
(1 + cωBWω). (33)

Note, however, that the dominant decays of excited
ρ’s are to final states other than 2π, hence the couplings
of these resonances to various multiparticle intermediate
states (4π, KK̄ etc.) become important at larger s, the
region of our interest. In the previous section we have seen
that the coupling of ρ to the 2π state results in a geometrical
series of 2π insertions into the ρ propagator yielding an
imaginary part normalized to the ρ → 2π width in the
formula for BWρ. The analogous summation procedure
can be repeated for each multihadron state coupled to a
given excited ρ, say, to ρ′(1450). This leads to a formula for
the ρ′ contribution to Fπ similar to (28), where ρ → ρ′ and
the effective width in BWρ′(s) is a sum over the effective
widths for each channel:

Γρ′(s)

= Γρ′→2π(s) + Γρ′→4π(s) + Γρ′→ρ2π(s) + Γρ′→KK̄(s)

+ . . . (34)

All we know about the functions on the RHS is their nor-
malization at s = m2

ρ′ to the corresponding partial width of
ρ′, so that altogether Γρ′(m2

ρ′) = Γ tot
ρ′ . The s-dependence

for each partial width has to be introduced in a model-
dependent way, requiring detailed information on 4π (see
e.g., [27]) and other hadronic final states in e+e−. In par-
ticular, to account for a proper threshold behavior one has
to introduce phase space factors for each Γρ′→f in (34),
different from the p-wave factor for Γρ(s). A complete kine-
matical and dynamical analysis of the partial widths for
excited ρ resonances is beyond our task (some models can
be found in [28]). We will continue using the same ansatz
as for ρ, with the simple p-wave threshold factor, having
in mind that there is still a room for improvement at this
point. We have checked that small modifications of the
effective width, e.g., replacing the effective threshold by
4mπ have little influence on the form factor.

Furthermore, the couplings of different vector reso-
nances to one and the same multihadron state generate
mixing between these resonances. To give an example of
this effect return to the unitarity relation (13) and sub-
stitute on the RHS the ρ′ resonance contribution to the
form factor while keeping the intermediate ρ exchange
for Aππ. This term corresponds to a chain of transitions
γ∗ → ρ′ → 2π → ρ → 2π. This non-diagonal amplitude is
clearly not accounted for by the 2π insertions to the indi-
vidual ρ and ρ′ propagators. One has to add to the form
factor new terms with the products of two BW propaga-
tors, e.g. the ρ′ contribution to the form factor will have
the following schematic form:

F (ρ′)
π (s) = cρ′BWρ′(s)(1 + xρ′ρ(s)BWρ(s) + . . .), (35)

where xρ′ρ is the mixing amplitude which is s-dependent, in
general, and ellipses indicate the mixing of ρ′ with other ρ
resonances. Suppose one uses a specific dynamical model of
ρ resonances predicting the normalization factors cρ,ρ′,...
of the BW propagators. After including the mixing, the
amplitude will have the form (35) with a complicated s-
dependence including an imaginary part. This system of
mixed propagators could then be diagonalized, giving in
the general case rise to complex couplings between vector
mesons and pions. Since we do not attempt to solve this
complicated dynamical pattern, in the model of our choice
we will keep the coefficients cρ,ρ′,... for few first resonances
as free fit parameters and for simplicity, restrict ourselves
to real values.

For the description of the infinite series of higher excita-
tions we adopt an ansatz rooted in the Veneziano amplitude
and dual resonance models. The specific dual-QCDNc=∞
amplitude, suggested in [20], contains an infinite amount
of zero-width vector mesons with the quantum numbers
of ρ:

Fπ(s) =
∞∑
n=0

cn
m2
n

m2
n − s

. (36)

For convenience we will count ρ resonances by a number n
which starts from n = 0 for the ρ meson, so that ρ′(1450)
and ρ

′′
(1700) correspond to n = 1, 2, respectively. The co-

efficients

cn =
(−1)nΓ (β − 1/2)

α′√πm2
nΓ (n+ 1)Γ (β − 1 − n)

(37)

decrease rapidly. The parameter α′ = 1/(2m2
ρ) is related to

the ρ-meson Regge trajectory: αρ(s) = 1+α′(s−m2
ρ). Fur-

thermore, the model postulates an equidistant mass spec-
trum:

m2
n = m2

ρ(1 + 2n). (38)

The parameter β is free and has to be fitted. We will use
c0 fitted from the ρ region and calculate β from (37). As
we shall see, the fit yields c0 = 1.098–1.171 corresponding
to β = 2.16 ÷ 2.3, in agreement with [20].

Using the above assumptions one easily obtains the
form factor in the closed analytical form:

Fπ(s) =
Γ (β − 1/2)√

πΓ (β − 1)
B(β − 1, 1/2 − α′s), (39)
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where B(x, y) is Euler’s Beta-function, so that Fπ(0) = 1.
Importantly, in this model also the mean-squared charge
radius of the pion (defined as 〈r2π〉 = 6(dFπ(s)/ds)|s=0),

〈r2π〉 = 0.42 ÷ 0.44 fm2, (40)

at β = 2.16 ÷ 2.3, agrees well with the experimental
value [30] 〈r2π〉exp = 0.439 ± 0.008 fm2 and with the recent
chiral perturbation theory determination [31] 〈r2π〉ChPT =
0.452 ± 0.013 fm2.

The most spectacular property of the dual-QCDNc=∞
model (inherited from the Veneziano amplitude) is its ex-
plicit duality: in the timelike region the form factor has
poles located at s = m2

n, whereas in the spacelike region at
large s < 0 it exhibits a smooth behavior with a power-law
asymptotic behavior determined by the parameter β:

lim
s→−∞Fπ(s) ∼ 1

sβ−1 . (41)

With β = 2.1–2.3 this is very close to the prediction of
perturbative QCD.

In [20] the model was further improved by including the
constant widths of resonances through the replacement:

m2
n

m2
n − s− iε

→ m2
n

m2
n − s− imnΓn

. (42)

The ansatz [20, 21] adopted for the total widths is again
motivated by string-like models:

Γn = γmn, (43)

with γ = 0.2 fixed from ρ. As explained above, to account
for the presence of 2π and other intermediate multiparti-
cle states coupled to ρ resonances one has to modify the
widths to include s-dependence with a proper threshold
behavior. Otherwise, the form factor predicts an unphysi-
cal imaginary part at s = 0. Being unable to account for all
possible intermediate multiparticle states coupled to each
ρn we use, as a remedy, the threshold behavior of ρn → 2π
partial width attributing it to the total width

Γn(s) =
m2
n

s

(
p(s)
p(m2

n)

)3

Γn. (44)

4 The model for the pion form factor

After all these modifications the model [20] for the pion
form factor becomes

Fπ(s) =
∞∑
n=0

cnBWn(s). (45)

In its simplest form it depends only on few parameters (β,
α′ and γ) and includes infinitely many hadronic degrees
of freedom.

Importantly, the coefficients cn decrease at n → ∞.
Hence starting from n ∼ 4, 5, moderate deviations of cn,
mn, Γn from the model predictions do not influence the

form factor, at least in the region of our interest, at
√
s < 2–

2.5 GeV. On the other hand, for the most important first
four resonances (including ρ′′′ ≡ ρ3 with m3 
2 GeV) we
will allow the coefficients, masses and widths to deviate
from the dual-QCDNc=∞ model values, having in mind
the effects of coupling to intermediate multiparticle states
discussed in the previous section. To a large extent, the fit-
ted parameters will be close to those of the dual-QCDNc=∞
model (see Table 1).

Summarizing, our model for the pion form factor has
the following form:

Fπ(s) (46)

=

[
3∑

n=0

cnBWn(s)

]
fit

+

[ ∞∑
n=4

cnBWn(s)

]
dual−QCDNc=∞

,

where in the ρ contribution (n = 0) the ρ–ω mixing is in-
cluded according to (33) with the fixed parameters taken
from [12]. In the above, the parameters of the four lowest
ρ0,1,2,3 states (i.e. ρ, ρ′(1450), ρ′′(1700) and ρ′′′) are sup-
posed to be fitted to experimental data, whereas the “tail”
with the infinite amount of ρn>4 states is taken as in the
dual-QCDNc=∞ model. However, having in mind the in-
sufficient precision of the current data at

√
s > 1 GeV, we

restrict the number of free fit parameters to the coefficients
c0,1,2, the masses m0 and m1 and the total widths Γ0 and
Γ1. The values of Γ2 and m2 are taken from [26]. The co-
efficient c3 of ρ3 is fixed from the normalization condition
for the form factor:

c3 = 1 − (c0 + c1 + c2)fit −
( ∞∑
n=4

cn

)
dual−QCDNc=∞

. (47)

All remaining parameters in (46), that is cn≥4, mn≥3, and
Γn≥3 are calculated from (37), (38) and (44), respectively.

Let us emphasize the main qualitative features of this
model. It nicely matches the existing ρ-dominance models
at

√
s < 1 GeV, such as the ones considered in [12], simply

because the ρn>2 states play a minor role in the
√
s < 1 GeV

region. The model (46) is flexible, that is, it allows one to
vary the proportion of fitted andmodelled resonances above
ρ. E.g., with sufficiently precise data at higher energies one
can include also the ρ4 state into the “fit” part. Alterna-
tively, ρ3 can be removed from the “fit” part and added
to the dual-QCDNc=∞ part. Furthermore, as mentioned
already, Fπ(s), as given by (46), can be easily continued
to s < 0 and compared with the experimental data and
QCD predictions in the spacelike region. Accordingly, one
gets a smooth power-like behavior at asymptotically large
timelike s. Altogether, the model contains a reasonably
small amount of free parameters: three per each fitted res-
onance (the mass, coefficient and total width) and three
“global” parametersα′, β, γ, withα′ = 1/(2m2

ρ) taken from
the Regge trajectory, β taken from (37) with c0 derived
from the fit, and with γ = 0.2. In principle, one can try to
relax and independently fit also the three “global” param-
eters, but we prefer to keep them fixed. Needless to say,
the suggested ansatz has considerable room for improve-
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Table 1. Parameters of the pion form factor (46) and results of the fit to the data. Masses
and widths are given in MeV. The row “Fit KS (GS)” contains the fitted values for the case

where all BWn are taken as in (30) (BW0,1,2 taken as in (31)). The sum
∞∑

n=4
cn is calculated

from (37). The PDG parameters for ρ(770) are those listed in [26] for “Charged only, τ decays
and e+e−”. The parameter cω is taken from [12]

Parameter Input Fit (KS) Fit (GS) dual- PDG value
QCDNc=∞ [26]

mρ – 773.9 ± 0.6 776.3 ± 0.6 input 775.5 ± 0.5
Γρ – 144.9 ± 1.0 150.5 ± 1.0 input 150.3 ± 1.6
mω 783.0 – – – 782.59 ± 0.11
Γω 8.4 – – – 8.49 ± 0.08
mρ′ – 1357 ± 18 1380 ± 18 1335 1465 ± 25
Γρ′ – 437 ± 60 340 ± 53 266 400 ± 60
mρ′′ 1700 – – 1724 1720 ± 20
Γρ′′ 240 – – 344 250 ± 100
mρ′′′ – – – 2040 –
Γρ′′′ – – – 400 –
c0 – 1.171 ± 0.007 1.098 ± 0.005 1.171 –
β c0 and (37) 2.30 ± 0.01 2.16 ± 0.015 2.3(input) –
cω 0.00184 (KS) – – – –

0.00195 (GS) –
c1 – −0.119 ± 0.011 −0.069 ± 0.009 −0.1171 –
c2 – 0.0115 ± 0.0064 0.0216 ± 0.0064 −0.0246
c3 (47) −0.0438 ∓ 0.02 −0.0309 ∓ 0.02 −0.00995 –
∞∑

n=4
cn −0.01936 – – −0.01936 –

χ2/d.o.f. – 155/101 153/101 – –

ment, especially concerning the treatment of the effective
s-dependent resonance widths.

Wehave fitted themodel (46) to the existing data [3,5–7]
for the timelike pion form factor. The results of the fit for
the two different versions of BW formulae: KS ((30) for
all resonances) and GS ((31) for the first three resonances
ρ0,1,2), together with the relevant input parameters are
presented in Table 1 and compared with the predictions
of the dual-QCDNc=∞ model. The results for |Fπ(s)|2 are
plotted in Fig. 1, separately for the

√
s < 1 GeV and

√
s >

1 GeV regions.
A few comments are in order.
The most spectacular result of the fit is the change of

the ρ′′ coefficient c2 with respect to the model [20] and to
the earlier fits [12], from negative values ∼ −(0.02–0.04) to
smaller but positive values ∼ 0.01–0.02. The positive sign is
a direct consequence of the dip in the cross section around
1.6 GeV (also the earlier fit of the data in [7] revealed a
similar pattern).

Furthermore, the fitted mass of ρ′ gets shifted with
respect to the PDG value, the latter obtained by adding
together data from all decay channels of ρ′. Note that a
lower mρ′ consistent with our fit is also obtained by the
fits in [12] and predicted by the dual-QCDNc=∞ model. It
is quite probable that a more elaborated model of the total
width of ρ′ including multiparticle thresholds will increase
the fitted mass. We note that the values of the masses and

widths of ρ, ρ′, ρ′′ as well as c0 and c1 are in the ballpark
of the dual-QCDNc=∞ model. The same is true for the
magnitude of c2, its positive sign is enforced by the dip
around 1.6 GeV and might be a consequence of the strong
mixing between ρ′′ and nearby resonances.

In general, the ρ′, ρ′′ and ρ′′ terms and their interplay
with the contribution of ρ in both imaginary and real parts
of the form factor are the main effects which determine the
behavior of |Fπ(s)|2 at

√
s > 1 GeV. In particular, the dip

in the form factor observed near
√
s = 1.6 GeV can only

be described by altering the sign of c2. The role of the
summed “tail” of ρn≥4 states is less important. One has
to admit that the quality of the fit is not very high (we
get typically χ2/d.o.f. 
 1.5); in fact, this could simply
indicate inconsistencies in the normalization of the various
pieces of existing data in the timelike region. Moreover,
the data points with large errors at

√
s = 2.5 ÷ 3 GeV

are systematically higher than the fitted curve, and the
value of Fπ(

√
s = mJ/ψ) extracted from the J/ψ → 2π

partial width is larger than the model prediction by a
factor of about three (this point was not included into the
fit). This disagreement deserves a comment. Note that the
extraction of Fπ(m2

J/ψ) is “theoretically biased”, because
one tacitly assumes that the intermediate photon exchange
is the only mechanism in this decay. Other mechanisms
such as one-photon plus two intermediate gluons could
also be important in the J/ψ → 2π. Hence, the hadronic
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Fig. 1. The pion form factor squared |Fπ(s)|2 as a function
of

√
s fitted to the data in the region near a and above b ρ

resonance. The solid (dashed) line corresponds to the KS (GS)
parameterization of BW formula. Data are taken from [3, 6]
(crosses), [5] (stars), and [7] (squares). The triangle point is
the value of the form factor extracted from J/ψ → 2π

matrix element in this isospin-violating transition could
be actually different from the pion form factor. Although
estimates [29] of gluonic effects based on the perturbative
charmonium annihilation are in favor of their smallness, we
still think there is room for non-perturbative effects which
are however not easily assessed. For the time being it seems
difficult to accommodate a pion form factor as large as the
one derived from J/ψ decay. (It will be interesting to check
for a similar effect in the 4π mode.)

To check our model further we continue Fπ(s) to s < 0
and compare the result with the data there (see Fig. 2). The
form factor obtained from direct electron–pion scattering
at small s < 0 (up to |s| = 0.25 GeV2) [30] is not sensitive to
the contributions of higher than ρ resonances, provided the
normalization to 1 at s = 0 is imposed. Note that the fitted
form factor (46) predicts 〈rπ〉2=0.440(0.426) fm2 for theKS
(GS) versions, close to the dual-QCDNc=∞ prediction (40)
and to the experimental value [30] quoted above.

At larger |s| the old data [32] obtained from pion electro-
production have large errors and suffer from some intrinsic
uncertainties [33]. More accurate data obtained recently
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Fig. 2. The pion form factor squared |Fπ(s)|2 as a function of
s in the spacelike region at low |s| a and large |s| b. The solid
(dashed) line corresponds to the analytic continuation of the
timelike form factor (46) with the KS (GS) parameterizations of
the BW formula. Data are taken from [30] (crosses), [34] (open
circles) and [32] (full squares). Dotted lines at |s| > 1 GeV2

represent the interval derived from QCD light-cone sum rule
predictions [17]

at JLab [34] at |s| < 1.6 GeV2 are in agreement with the
model, but not sensitive to the details of the fit. Further-
more, there is reasonable agreement between the model and
the QCD light-cone sum rule (LCSR) predictions [16,17].
The latter are taken from [17] with their estimated theo-
retical uncertainty. The pion form factor calculated from
three-point QCD sum rules [15] in the region of their va-
lidity |s| ∼ 1–4 GeV2 is within the LCSR interval and
therefore not shown separately.

If we try to artificially enhance the form factor at large
timelike region, e.g., by enhancing the contribution of the
“tail” trying to fit also the point at

√
s = mJ/ψ, the form

factor at spacelike s < 0 increases correspondingly, and
the general agreement between data and QCD sum rule
predictions is lost. We conclude therefore, just as before,
that it is implausible for the form factor obtained on the
basis of dual resonance approach to reach values |Fπ(s)|2 ≥
0.01 at

√
s = 2.5 ÷ 3 GeV without conflicting with the

spacelike data and especially with QCD predictions. This
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statement is independent of many details involved in the
timelike form factor model and in the QCD calculations. It
is therefore extremely interesting to obtain new accurate
data at least up to

√
s = 2.5 GeV to check this conjecture.

5 Charged and neutral kaon e.m. form factors

We now adopt the analogous strategy to describe the kaon
form factors. Combining information onK+K− andK0K̄0

production with constraints from isospin symmetry, and
using assumptions deduced from the quark model and the
OZI rule, it is possible to separate the I = 1 and I =
0 amplitudes in the form factor, and even the ω and φ
components of the I = 0 part. The I = 1 part can then be
used to predict the rate for τ → νK−K0.

The electromagnetic form factors for charged and neu-
tral kaons defined similar to (1),

〈K+(p1)K−(p2)|jemµ |0〉 = (p1 − p2)µ FK+(s) (48)

〈K0(p1)K̄0(p2)|jemµ |0〉 = (p1 − p2)µ FK0(s), (49)

obey the constraints

FK+(0) = 1, FK0(0) = 0. (50)

They canbe separated into their isospin-one and -zeroparts,

FK+(K0) = F
(I=1)
K+(K0) + F

(I=0)
K+(K0). (51)

From isospin invariance one derives

F
(I=0)
K+ = F

(I=0)
K0 , F

(I=1)
K+ = −F (I=1)

K0 , (52)

and the I = 1 part can furthermore be used to predict the
charged current matrix element:

〈K+(p1)K̄0(p2)|j−
µ |0〉 = (p1 − p2)µ2F

(I=1)
K+ (s). (53)

A simultaneous fit to the two electromagnetic form factors
leads, therefore, to a direct prediction for the rate for τ →
νK−K0, without any further assumption.

In the context of vector dominance, combined with the
quark model, the kaon form factors are saturated by ρ, ω,
φ and their radial excitations,

FK(s) =
∑

V=ρ,ω,φ,ρ′,ω′,φ′,...

κV fV gV KK̄mV

m2
V − s− imV ΓV

, (54)

and it is the ρ-mediated I = 1 part which enters both the
e.m. and the charged current matrix elements. We define
the decay constants of the vector mesons via

〈V |jemµ |0〉 = κVmV fV ε
µ∗
(V ), (55)

where εV is the polarization vector of V , and the coefficients
κρ = 1/

√
2 (see (9)), κω = 1/(3

√
2) and κφ = −1/3 reflect

the valence quark content of these mesons corresponding
to “ideal” mixing:

ρ0 =
ūu− d̄d√

2
, ω =

ūu+ d̄d√
2

, φ = s̄s. (56)

q
q

s

s

q

q

q

q

s

A qq

A
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qs

sq

Fig. 3. The quark diagrams corresponding to the contributions
to the pion and kaon form factors with various flavor combi-
nations

The strong coupling is defined as in (10):

〈K(p1)K̄(p2)|V 〉 = (p2 − p1)νεν(V )gV KK̄ . (57)

In the flavor SU(3)-symmetry limit one evidently has

FK+(s) = Fπ(s), FK0(s) = 0. (58)

Since this symmetry is broken by the strange–non-strange
quark-mass difference, one has to expect quite noticeable
deviations from (58), in particular the K0 form factor
does not vanish at non-zero s. Moreover, since BR(φ →
K+K−) ∼ BR(φ → K0K̄0), the neutral and charged kaon
form factors have almost equal magnitudes near the φ res-
onance. In fact, the SU(3)-breaking also manifests itself in
the valence quark content of vector mesons given in (56)
and in the mass splitting between mρ 
 mω and mφ. In
order to derive the kaon form factors in terms of separate
vector meson contributions, it is convenient to consider a
generic quark diagram of the strong V PP̄ coupling and
distinguish these diagrams by the presence and position of
s quarks. In the isospin symmetry limit, which we adopt
here, there are three different diagrams depicted in Fig. 3:
(1) without strange quarks (upper),
(2) with s and s̄ in the PP̄ state only (middle) and
(3) with s and s̄ in the V and the PP̄ state (bottom).

We denote the corresponding hadronic invariant am-
plitudes Aqq, Aqs and Asq. The diagrams with charge con-
jugated quark lines lead to the same amplitudes with an
additional minus sign, taking into account the negative C-
parity of neutral vector mesons. The strong couplings of
ρ, ω, φ are then expressed in terms of diagrams:

gρ0π+π− ≡ gρππ =
√

2Aqq,

gρ0K+K− = gωK+K− =
1√
2
Aqs,

gρ0K0K̄0 = −gωK0K̄0 = − 1√
2
Aqs,

gφK+K− = gφK0K̄0 = −Asq. (59)

Thus, from the quark model one expects approximately
equalKK̄ρ andKK̄ω couplings. It is easy to check that this



50 C. Bruch et al.: Modeling the pion and kaon form factors in the timelike region

simple formalism correctly reproduces gωπ+π− = gρπ0π0 =
0, as well as SU(3)-symmetry relations between the cou-
plings. In what follows we also use the relation between
the decay constants of ω and ρ following from (55): fω =
fρ. Substituting the decay constants and hadronic cou-
plings (59) to (54) we obtain the desired decompositions
of the kaon form factors in terms of vector meson contri-
butions:

FK+(s) (60)

=
fρAqs
2mρ

BWρ(s) +
fρAqs
6mω

BWω(s) +
fφAsq
3mφ

BWφ(s),

FK0(s) (61)

= − fρAqs
2mρ

BWρ(s) +
fρAqs
6mω

BWω(s) +
fφAsq
3mφ

BWφ(s).

Written in the same terms the pion form factor is

Fπ(s) =
fρAqq
mρ

BWρ(s), (62)

and fρAqq/mρ = 1 in the simplest version of VDM. In the
SU(3) limit fρ = fφ, mρ = mω = mφ , Aqq = Aqs = Asq
and the relations (58) are reproduced. In (60) and (61) we
will adopt the KS version of BW formulae for ρ, and the
analogous s-dependent width for φ,

Γφ(s) =
m2
φ

s

(
pK(s)
pK(m2

φ)

)3

Γφ. (63)

with Γφ ≡ Γ tot(φ) and pK(s) = (s − 4m2
K)1/2/2. For

simplicity, we assume that the effective threshold of all φ
decay modes including φ → 3π is approximated by (63),
having in mind that the non-KK̄ channels give only about
20% of Γφ. Naturally, the possibility to use the GS-form
in (60) and (61) exists, yielding inessential differences. For
simplicity, to avoid complicated 3π-threshold factors we
will use constant widths for ω, having in mind that the
thresholds aremuch lower than theboundary of thephysical
region of the form factor: 9m2

π � 4m2
K . This is a good

approximation at least for the narrow ω resonance.
Adding radial excitations to all ground-state vector

mesons is the next natural step. From the pion form factor
analysis we already learned that the “tails” of higher reso-
nances are numerically inessential. For the kaon form factor
we therefore restrict the analysis to the excited states ρ′,
ρ′′, ω′ ≡ ω(1420) , ω′′ ≡ ω(1650) and φ′ ≡ φ(1680) [26].
Higher excitations, as well as more elaborated s-dependent
widths, can be installed in the future when more accurate
data will be available. Since the products of decay con-
stants and strong couplings in (60) and (61) will not be
separated and have to be fitted as a whole, it is convenient
to introduce again the normalization factors cKV instead
of these products. The ansatz for the kaon form factors
thus reads

FK+(s)

=
1
2

(cKρ BWρ(s) + cKρ′ BWρ′(s) + cKρ′′BWρ′′(s))

+
1
6

(cKω BWω(s) + cKω′BWω′(s) + cKω′′BWω′′(s))

+
1
3

(cφBWφ(s) + cφ′BWφ′(s)), (64)

FK0(s)

= − 1
2

(cKρ BWρ(s) + cKρ′ BWρ′(s) + cKρ′′BWρ′′(s))

+
1
6

(cKω BWω(s) + cKω′BWω′(s) + cKω′′BWω′′(s))

+
1
3

(ηφcφBWφ(s) + cφ′BWφ′(s)). (65)

The widths are with p-wave factors for ρ and φ states as
explained above, and constant for ω states, which is how-
ever a rather crude approximation for ω′, ω′′. The ansatz
in (64) and (65) reflects isospin invariance and the hierarchy
of vector meson contributions according to their valence
quark content; however, it allows for the possibility of SU(3)
violations which could and will become manifest in differ-
ences between the fitted normalization coefficients. The
additional factor ηφ in (65) takes into account the isospin-
breaking difference between the charged and neutral kaon
couplings to φ:

ηφ ≡ gφK0K̄0

gφK+K−

=

(
BR(φ → K0K̄0)(m2

φ − 4m2
K+)3/2

BR(φ → K+K−)(m2
φ − 4m2

K0)3/2

)1/2

. (66)

According to [26] the central value of this factor slightly
deviates from the unit:

ηφ = 1.027 ± 0.01. (67)

In the vicinity of the φ resonance this small effect is no-
ticeable in the fit, and as far as the branching ratio is
concerned, is dominated by the phase space factor. The
factor ηφ also takes care of Coulomb-rescattering and other
isospin-violating differences between charged and neutral
modes (see also [35, 36]). To ensure the proper normal-
izations FK0(0) = 0 and FK+(0) = 1, we introduce an
additional energy dependence with a simple step-function

ηφ(s) = 1 + (ηφ − 1)θ(
√
s− (mφ − Γφ))θ(mφ + Γφ − √

s),
(68)

which in the future, after this effect is better understood
both experimentally and theoretically, can be replaced by
an appropriate analytical energy dependence.

We have fitted the model (64) and (65) to the available
data on charged [37–41] and neutral [4,37,42,43] kaon form
factors. The masses and widths of ρ, ω and their excitations
are taken from [26] and are listed in the Table 2. Two
different variants of the fit are carried out:
(1) the constrained fit (motivated by the quark model)
where the normalization factors for ω resonances are fixed:
cKω,ω′,ω′′ = cKρ,ρ′,ρ′′ and only the normalization factors for
the ρ resonances are fitted;
(2) the unconstrained fit, where ω- and ρ- factors are fitted
as independent parameters.
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Table 2. Parameters of the kaon form factors and results of the fit to the data.
Masses and widths are given in MeV. The row “Fit(1)” (Fit(2))contains the values
of the constrained (unconstrained) fits

Parameter Input Fit(1) Fit(2) PDG value [26]
mφ – 1019.372 ± 0.02 1019.355 ± 0.02 1019.456 ± 0.02
Γφ – 4.36 ± 0.05 4.29 ± 0.05 4.26 ± 0.05
mφ′ 1680 – – 1680 ± 20
Γφ′ 150 – – 150 ± 50
mρ 775 – – 775.8 ± 0.5
Γρ 150 – – 150.3 ± 1.6
mρ′ 1465 – – 1465 ± 25
Γρ′ 400 – – 400 ± 60
mρ′′ 1720 – – 1720 ± 20
Γρ′′ 250 – – 250 ± 100
mω 783.0 – – 782.59 ± 0.11
Γω 8.4 – – 8.49 ± 0.08
mω′ 1425 – – 1400–1450
Γω′ 215 – – 180–250
mω′′ 1670 – – 1670 ± 30
Γω′′ 315 – – 315 ± 35
cφ – 1.018 ± 0.006 0.999 ± 0.007 –
cφ′ 1 − cK

φ −0.018 ∓ 0.006 0.001 ∓ 0.007 –
cKρ – 1.195 ± 0.009 1.139 ± 0.010 –
cK

ρ′ – −0.112 ± 0.010 −0.124 ± 0.012 –
cK

ρ′′ 1 − cK
ρ − cK

ρ′ −0.083 ∓ 0.019 −0.015 ∓ 0.022 –
cKω (1) cK

ρ 1.195 ± 0.009 – –
cK

ω (2) – – 1.467 ± 0.035 –
cK

ω′(1) cK
ρ′ −0.112 ± 0.010 – –

cK
ω′(2) – – −0.018 ± 0.024 –
cK

ω′′ 1 − cK
ω − cK

ω′ −0.083 ∓ 0.019 −0.449 ∓ 0.059 –
χ2/d.o.f. – 328/242 281/240 –

First, the mass and width of φ as well as the coeffi-
cient ηφ are fitted in the region around the φ resonance.
We obtain ηφ = 1.011 ± 0.009 (1.019 ± 0.009) for the con-
strained (unconstrained) fit, in good agreement with the
experimental value (67). Fixing ηφ and usingmφ and Γφ as
starting values, the data in the whole region of

√
s are then

fitted. The results of the fit are collected in Table 2. The
best (i.e., stable and physically plausible) results for both
variants of the fit are obtained if data on FK+ and FK0

are fitted simultaneously. Thus, predicting FK0 from FK+

with the currently available data is not yet possible. The
resulting curves for the form factors are plotted in Figs. 4
and 5. Most importantly, fitting the kaon form factor above
the φ resonance, it is indeed possible to extract separate
ρ, ω, φ components, which was not possible in the φ region
due to the dominance of this resonance.

We also find the pattern of the normalization factors
cKρ,ρ′ for the first two ρ resonance to be very similar to the
corresponding values c0,1 obtained in the pion form factor
fits. These factors can be immediately translated into the
strong couplings dividing out the decay constants of the
vector mesons. The latter are independently measured in

the leptonic decays revealing a very mild SU(3)-breaking,
at the level of 10%; according to the data in [26]: fρ 

220 MeV, fω 
 195 MeV and fφ 
 228 MeV. The SU(3)-
violating difference between the couplings of ρ and φ to
kaons estimated from comparing cKρ and cφ is also moderate
in both versions of the fit.

As already noticed above, the constraint cKω = cKρ natu-
rally follows from the valence quark content of both mesons
and we consider this constraint as a part of our model. The
fact that the unconstrained fit gives about 25% difference
between these two coefficients, a noticeable deviation from
the quark-diagram relation, should be taken with caution,
having in mind the poor quality of the data. Also χ2’s of
both fits are in the same ballpark, so that from the fitting
point of view we cannot yet give any preference to the ver-
sion with the “floating” couplings of ω resonances. On the
other hand, this difference indicates that the fit is able to
resolve also the “fine structure” of the couplings. The dif-
ferences between the normalization factors given by the fit
for excited resonances: cKρ′ versus cKω′ (in the unconstrained
fit), cKρ′ versus cφ′ , etc. are generally large, which is not
surprising, in view of the complicated mixing between all
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Fig. 4. The charged kaon form factor squared |FK+(s)|2 as a
function of

√
s fitted to the data taken from [37] (crosses), [38]

(open squares), [39] (open circles), [40] (full squares) and [41]
(full circles). The solid (dashed) lines correspond to the con-
strained (unconstrained) fit

these states. Including in the future more precise data and
switching on the “tails” of the dual QCDNc=∞ amplitudes
in the kaon form factors for all three vector mesons will
allow one to reveal these differences more accurately.

Furthermore, an indication for an excess of the mea-
sured charged kaon form factor versus the model is present
in Fig. 4b in the region around 2 GeV, although the ex-
perimental errors are large. Remember that we have not
included in our fit the contribution of the second excited φ′′
state with a mass around 2 GeV, which might be responsi-
ble for this potential difference. However, we refrain from
further investigation before more accurate data are avail-
able. The mean-squared charge radius of the K+ obtained
in our model,

√〈r2K〉 = 0.56 fm (for both fits and with a
small error), is in a good agreement with the experimental
value [44]

√〈r2K〉exp = 0.53±0.05 fm. We have also checked
that, being analytically continued to large s < −1 GeV2,
the charged kaon form factor agrees with the LCSR pre-
diction obtained in [17].

Finally, as mentioned in the Introduction, the separate
reconstruction of I = 0 and I = 1 spectral functions might
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 0.98  0.99  1  1.01  1.02  1.03  1.04  1.05√
s[GeV]

|FK0(s)|2

b

0.001

 0.01

 0.1

 1

 10

 100

 1.2  1.4  1.6  1.8  2  2.2  2.4√
s[GeV]

|FK0(s)|2

Fig. 5. The neutral kaon form factor squared |FK0(s)|2 as
a function of

√
s fitted to the data taken from [4](trian-

gles), [37](crosses), [42](open squares) and [43](full circles).
The solid (dashed) lines correspond to the constrained (un-
constrained) fit

be a useful ingredient for various phenomenological anal-
yses. In Fig. 6 we display the spectral functions defined as

ρ
(I=0,1)
KK̄

(s) =
1

12π

∣∣∣∣FK+(s) ± FK0(s)
2

∣∣∣∣
2( 2pK(s)√

s

)3

,

(69)
noticing that this observable is quite sensitive to the pattern
of resonances in the form factor.

6 Predicting τ → K−K0ντ decay distribution
and rate

As emphasized above, the isospin-one part of the e.m.
kaon form factor, together with the isospin-symmetry re-
lation (53), can be used to predict the τ → K−K0ντ decay
width. The differential decay distribution in

√
Q2 (the in-

variant mass of the kaon pair), normalized to the leptonic
width of τ reads(

1
BR(τ → µ−ν̄µντ )

)
dBR(τ → K−K0ντ )

d
√
Q2



C. Bruch et al.: Modeling the pion and kaon form factors in the timelike region 53

a

 1e-05

0.0001

 0.001

 0.01

 0.1

 1

 10

 1  1.2  1.4  1.6  1.8  2  2.2  2.4√
s[GeV]

ρ
(I=0)

KK̄
(s)

b

 1e-05

0.0001

 0.001

 0.01

 1  1.2  1.4  1.6  1.8  2  2.2  2.4√
s[GeV]

ρ
(I=1)

KK̄
(s)

Fig. 6. The spectral functions (69) with I = 0 a and I = 1 b
obtained from the fitted kaon form factors. The solid (dashed)
lines correspond to the constrained (unconstrained) fit

=
|Vud|2
2m2

τ

(
1 +

2Q2

m2
τ

)(
1 − Q2

m2
τ

)2(
1 − 4m2

K

Q2

)3/2

×
√
Q2 |FK−K0(Q2)|2. (70)

In accordance with the isospin limit, we neglect the mass
difference between charged and neutral kaons and the effect
of the scalar form factor. Using (53) we have FK−K0 =
−2F (I=1)

K+ , hence

|FK−K0(Q2)|2 (71)

= |cKρ BWρ(Q2) + cKρ′ BWρ′(Q2) + cKρ′′BWρ′′(Q2)|2.

The fitted values for cKρ,ρ′,ρ′′ from Table 2 thus allow us
to calculate the decay distribution (70). The normalized
distribution is plotted in Fig. 7 and (qualitatively) com-
pared with the event distribution in the kaon pair mass,
measured by the CLEO Collaboration [45]. Another mea-
surement of this distribution by the ALEPH Collaboration
can be found in [46]. Integrating over

√
Q2 from 2mK to

mτ we obtain the branching ratio

BR(τ → K−K0ντ ) = 0.19 ± 0.01% (0.13 ± 0.01%) (72)
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Fig. 7. The normalized distribution dΓ (τ→K−K0ντ )/d
√

Q2

Γ (τ→K−K0ντ ) in

the kaon pair invariant mass
√
Q2 in units of GeV−1 obtained

from the fitted kaon form factor; the solid (dashed) line cor-
responds to the constrained (unconstrained) fit. The event
distribution measured by the CLEO Collaboration [45] and
normalized, dividing by the total number of events, is shown
with points

for the constrained (unconstrained) fit, to be compared
with the experimentally measured value [26]

BR(τ → K−K0ντ ) = 0.154 ± 0.016%. (73)

We see that both the decay distribution and the decay
width are very sensitive to the pattern of ρ resonances in
the isospin-one form factor. Generally, the width grows
with the increase of the excited ρ contributions, an effect
observed earlier in [47] (see also [48]).

7 Conclusions

In this paper we considered the models of timelike form
factors of pions and kaons in anticipation of new and more
accurate data in the region above 1 GeV, from e+e− ma-
chines using the radiative return method. We introduced an
ansatz for the pion form factor which is based on dual res-
onance models and Veneziano amplitude. We argued that
the parameters of the ground state and first excited states
can deviate from the model prediction due to effects of
mixing with multiparticle (e.g., 2π or 4π states), therefore
have to be fitted independently as free parameters. From
the fit to the available pion form factor data we have found
that the main contribution to the form factor originates
from the ground state plus the first 2–3 radially excited
states. The tail from the infinite series of resonances pro-
duces inessential, but visible effects. The sign and value
of the coefficients at certain excited resonances are shifted
with respect to the dual QCDNc=∞ ansatz signaling large
mixing effects. Possible checks of the model are provided
by the spacelike form factors, the pion charge radius and
the behavior for large s in the timelike region. In partic-
ular around

√
s = 3 GeV we predict a value smaller than
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the one anticipated from J/ψ decay. On the other hand,
data fitted to this model can be used for important tests
of quark–hadron duality, and of the QCD calculations of
the pion form factor in the spacelike region.

Furthermore, we formulated an analogous model for the
kaon form factor and demonstrated that the contributions
of φ, ω and ρ resonances (or, alternatively, the isospin-zero
and -one components) can be separated by the fit. Inter-
estingly, the τ → K−K0ντ -decay distribution and partial
width predicted from the model manifest a substantial sen-
sitivity to the pattern of ρ resonances in the isospin-one
part of the form factor.

The model still has considerable room for improvement.
In particular, a more detailed kinematical and dynamical
analysis of total widths in the Breit–Wigner factors would
allow one to implement a more accurate energy dependence
in these widths.
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